Xindice 1.1 Developer Guide

$Revision: 511427 $

by Kimbro Staken, Dave Viner
Table of contents

1 Introduction to Programming XiNGiCe.........cueeeieriereerinie et 3
1.1 ACCESSING T SEIVEN ...t e e be e raeereens 3
1.2 Introducing the XML:DB XML Database APlcccoovveeiieienieseese e 4
1.3 Setting up Your Build ENVIFONMENL..........cccoviieiierieeeeseesie e e e eee e sae e ssee e e 5
1.4 Preparing the Server For the EXampPIEsS.........ccoeiiinineeee e 5
1.5 Diving in With an EXample Program...........cocoeereeeeieneneseseseses e 6
1.6 Accessing XindiCe REMOLELYcoiiiiiiiiieeeee s 10

2 Managing DOCUMENLES.......ccouiiiieiie ettt e et esae b e b e e sbe e ssreebeeenseeseesneeenns 11
2.1 Creating @ COHECHON.. ..o et 11
2.2 WOrking With DOCUMENLS.........cueiieiieiisiesiecieseesie e see e eee e ssesae e e sseeeesneenseeneens 13

3 Using XPath to Query the DalaDase............ccoerereriieiieriise e 16
T I 1 gL 0o 0 Tox i o o OSSR 16
32UsSIiNg the XML:DB JAVAAPI.......c.o ettt 16

4 Using XUpdate to Modify the Database...........ccccveeeieeiiiiicie e 18
3 01 [8 o1 oo OSSR 18
4.2 XUPdate COMMEBNGS.......cceeieeiesiesiieieseesieeeeseesteeee e e saessee e esesseesseensesseensesssesseenes 19
4.3 XUpdate NOAE CONSIIUCLION.cveriiiiriiriesieeieeeee et ens 19
4.4 Using the XML:DB APl for XUPaLE.........cceeiririieieiese e 19

5 SEONMNG MELAOAIAL. ... eeeeeeeeitee ettt s e e s be et e s reesbeebeeseenaean 20
5.1 ENaDIiNg MELA0aLa..........ooieeiie et 21

20 LS 10 001 = r= = S 22

Xindice 1.1 Developer Guide

5.3 SAMPIe MELadata COUE.........cuereerieeieiie e e 22
6 EXAMPIE APPIICALION.c.eeeeieeiie ettt s re e s e et e e enes 23
6.1 AAArESS BOOK.......ueiuiitiriieiieieie ettt sttt be st b b nenreeneas 24
7 EXPEriMENtal FEALUIES.........cccveeeecece ettt e e e nne s 24

Page 2

Xindice 1.1 Developer Guide

I1f you notice incorrectness in this documentation, please notify Xindice community. Y our feedback will help create better
documentation.

1. Introduction to Programming Xindice

1.1. Accessing the Server

The Xindice server can be accessed either programmatically through the server's APIs, or
from the command line using the provided command line tools. This document covers
programmatic access, for more information on using the command line interface please refer
to the Xindice Users Guide.

1.11. API's

Xindice currently offersthree layers of APIsthat can be used to develop applications.

XML:DB XML Database API used to develop Xindice applicationsin Java. Thisisthe
primary APl used to develop applications and it will be given the most coverage in this
manual. Xindice provides two implementations of the XML:DB API. Oneis built on top
of the Xindice XML-RPC API, and another embeds Xindice within the same JVM.
Xindice currently implements the May 07, 2001 draft of the XML:DB API. This API will
change dlightly in the future to track the development of the XML:DB API.

Xindice XM L-RPC API used when accessing Xindice from alanguage other then Java.
The XML-RPC API isbuilt on top of the Core Server API. XML-RPC implementation is
provided by Apache Web Services Project.

Core Server API istheinternal Java API of the core database engine. This API is used to
build the XML-RPC API and embedded XML:DB API. Thisisthe lowest level API and
isonly available to software running in the same Java VM as the database engine itself.

The most common API for end user applicationsisthe XML:DB XML Database API that
was developed by the XML:DB Initiative. This API isavendor neutral API intended to make
it possible to build applications that will work with more then one XML database without too
much difficulty. Thisis similar to the capabilities provided by JDBC for relational databases.
More information about this API can be found on the XML:DB Initiative web site,

http://xmldb-org.sourceforge.net. Most programming examplesin this manual will use the
XML:DB API. The Xindice implementation of the APl isa Core Level 1 implementation.

The Xindice server also exposes a XML-RPC API that is used to implement the XML:DB
API. The XML-RPC API will mainly be of interest to those who want to access Xindice
from alanguage other then Java. Any language that supports a XML-RPC should be able to

Page 3

mail.html
guide-user.html
http://xmldb-org.sourceforge.net/
http://xmldb-org.sourceforge.net/

Xindice 1.1 Developer Guide

utilize the services of the Xindice server viathe XML-RPC API. This document does not
cover development with the XML-RPC API asthe XML:DB API isthe preferred mechanism
for developing Xindice applications. If you are devel oping applications in Javayou can
safely ignore the existence of this API. The XML-RPC API will be covered in a seperate
document to be written at alater time.

Thefinal API for Xindiceisthe Core Server API.

1.2. Introducing the XML:DB XML Database API

XML:DB API is being developed by the XML:DB Initiative to facilitate the development of
applications that function with minimal change on more then one XML database. Thisis
roughly equivalent to the functionality provided by JDBC or ODBC for providing access to
relational databases. Xindice provides an implementation of the XML:DB API that also
serves as the primary programming API for Xindice.

The XML:DB API is based around the concept of collections that store resources. A resource
can be an XML Document, a binary blob or some type that is not currently defined.
Collections can be arranged in a hierarchical fashion. This makes the architecture very
similar to that of atypical Windows or UNIX file system. What is different however, is that
collections also expose services that allow you to do things such as query XML documents
using X Path or update resources in a transactionally secure manner.

The XML:DB API defines severa levels of interoperability called Core Levelsin XML:DB
terminology. The Xindice implementation of the API isacomplete Core Level 1
implementation plus implementations of some of the optional services.

Required Core 1 services supported by Xindice include.
« XPathQueryService - Enables execution of XPath queries against the database.

Optional Core 1 services supported by Xindice include.

« XUpdateQueryService - Enables execution of XUpdate queries against the database.
« CollectionManagementService - Provides basic facilities to create and remove
collections.

In addition to Core Level 1 support the Xindice implementation also supports afew added
services that are specific to Xindice. These services exist because the functionality is
necessary to fully utilize all the capabilities provided by Xindice. However, they are
proprietary to Xindice and will not function unchanged on other XML databases.

The following services are currently provided by Xindice and are not part of the common
XML:DB API.

Page 4

http://xmldb-org.sourceforge.net/

Xindice 1.1 Developer Guide

« Databasel nstanceM anager - Provides the ability to control the operation of the server
programatically.

» CollectionManager - Provides the ability to create and configure collection instances
within the server. Thisis amuch more functional version of
CollectionManagementService that will only work with Xindice.

While this guide aims to provide some useful examples and to guide you in the process of
getting to know how to program Xindice it is also useful to know that there is agood source
of example code within the server it self. The Xindice command line tools are built 100% on
the XML:DB API and provide a pretty comprehensive set of examplesin how to use the API.
Thisis especially true when it comes to the Xindice specific services that are included with
the server. The source code for all the command line tools can be found in

Xi ndi ce/ j aval src/ or g/ apache/ xi ndi ce/ t ool s/ conmand.

1.3. Setting up Your Build Environment

Before you can build applications for Xindice you need to make sure you have your build
environment properly setup. This mainly consists of making sure that you have the proper
VM version and a properly configured CLASSPATH.

To build applications for Xindice you can use JDK 1.3 or 1.4. JDK 1.2 and below will not
work. If you have more than one Java VM installed make sure that your JAVA HOVE
environment variable and PATH environment variable both include the correct path.

Once you have your Java VM properly configured you need to add afew jar filesto your
CLASSPATH. The following list of jars are required and should be made available on your
CLASSPATH. All required jarscan befound inxi ndi ce/ javal/lib

« Xxindicejar - contains the main Xindice classes that are used by the client API.

« xmldb-common.jar, xmldb-api.jar, xmldb-api-sdk.jar, xmldb-xupdate.jar - contain
implementations of the XML:DB APl and XUpdate API.

xml-apisjar - contains Java XML APIs.

Xerces.jar - contains the Xerces XML parser.

xalan.jar - contains the Xalan XSLT engine.

commons-logging.jar - contains the Jakarta Commons L ogging package.

1.4. Preparing the Server For the Examples

Before we get to some example code, we need to do alittle work to setup the server. Don't
worry nothing hard.

First we need to make sure the addressbook collection exists. If you followed the install
instructions completely you should have already created this, but if not you should do so

Page 5

Xindice 1.1 Developer Guide

now. To find out if the collection exists you can run:
xindice lc -c /db
If you don't see 'addressbook’ listed in the result then you need to create the collection. To
create it just run:
xi ndice ac -c /db -n addresshook
Now that we have the collection, we can add afew example documents so that we have

something to play with. Y ou can find the examplesin your Xindice installation in the
directory j ava/ exanpl es/ gui de/ xm . Run these commands to add the documents.

cd $XI NDI CE_HOVE/ j ava/ exanpl es/ gui de/ xni
xi ndi ce ad -c /db/addressbook -f addressl.xm -n addressl
xi ndice ad -c¢ /db/addressbook -f address2.xnl -n address2

If you're on Windows you'll need to adjust the path in the cd command for your platform.
Most of the examplesin the manual will be written for UNIX but will work fine in Windows
if you just replace / with \ and $XINDICE_HOME with %XINDICE_HOME%.

That wasn't so bad and now we're set to look at some example code.
1.5. Diving in With an Example Program

1.5.1. Smple XML:DB Example Program

This example simply executes an XPath query against a collection, retrieves the results as
text and prints them out.

Y ou can find the source code for this examplein
Xindice/javalexamples/guide/src/org/apache/xindice/examples/Examplel.java

package org. apache. xi ndi ce. exanpl es;

i mport org.xm db. api . base. *;
i mport org.xm db. api . nbdul es. *;
i mport org.xm db. api . *;

public class Exanpl el {

public static void main(String[] args) throws Exception {
Col ection col = null
try {
String driver = "org. apache. xi ndi ce. client.xmn db. Dat abasel npl "
Class ¢ = O ass.forName(driver);

Dat abase dat abase = (Dat abase) c.new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;

Page 6

Xindice 1.1 Developer Guide

String uri = "xnl db: xi ndi ce:///db/addr essbook"
col = Dat abaseManager. get Col | ecti on(uri);

String xpath = "//person[fname='John']";
XPat hQuer yServi ce service =
(XPat hQuer yServi ce) col . get Service("XPat hQueryService", "1.0");
ResourceSet resultSet = service. query(xpath);
Resourcelterator results = resultSet.getlterator();
whil e (results. hasMreResources()) {
Resource res = results. next Resource();
Systemout.println((String) res.getContent());

}
} catch (XM.DBException e) {
Systemerr.println("XM: DB Exception occured " + e.errorCode);
} finally {
if (col '=null) {
col . close();

}
}

}

Before diving into the gory detail of what this program is doing, let's run it and see what we
get back.

If you have a binary build of Xindice the examples are already built and you can run this
example by typing.

cd $XI NDI CE_HOVE/ j aval/ exanpl es/ gui de
./run org.apache. xi ndi ce. exanpl es. Exanpl el

If al goeswell, you should see aresult that looks something like this.

<?xm version="1.0"?>
<person xm ns:src="http://xm .apache. or g/ xi ndi ce/ Query"
src: col ="/ db/ addr essbook” src: key="address1">
<f nane>John</ f name>
<l name>Sni t h</ | nanme>
<phone type="wor k" >563- 456- 7890</ phone>
<phone type="hone">534-567-8901</ phone>
<emai | type="hone">jsnith@onenuail.conx/enail >
<emmi | type="work">j ohn@ ovesushi . conk/ emai | >
<address type="hone">34 S. Col on St.</address>
<address type="work">9967 W Shrinp Ave. </ address>
</ per son>

Now that we've seen the result, let's dive in and look at the code in detail. While thisisn't the
simplest possible example program to start with it does anice job of showing all the basic
techniques used when building applications with the XML:DB API.

Page 7

Xindice 1.1 Developer Guide

To begin the program imports several XML :DB packages.

i mport org.xm db. api . base. *;
i mport org.xm db. api . nodul es. *;
i mport org.xm db. api . *;

These import the basic classes required by the API. i npor t

org. xm db. api . base. *; isthe base APl module and isrequired for all XML:DB
applications. i nport org. xni db. api . *; importsthe al important

Dat abaseManager classwhich isthe entry point into the API. i nport

or g. xm db. api . nodul es. *; bringsin the optional modules defined for the API. In
this case the module we're interested in is XPat hQuer ySer vi ce.

Before we can use the APl we need to create and register the database driver we want to use.
In this case since we're writing for Xindice we use

or g. apache. xi ndi ce. cl i ent. xn db. Dat abasel npl for our driver and register
it with the Dat abaseManager

String driver = "org.apache. xi ndi ce. client.xmn db. Dat abasel nmpl ";
Class ¢ = O ass.forNanme(driver);

Dat abase dat abase = (Dat abase) c. new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;

Now that our driver isregistered we're ready to retrieve the collection that we want to work
with.

String uri = "xm db: xi ndi ce: /// db/ addr essbook";
Col l ection col =
Dat abaseManager . get Col | ecti on(uri);

Inthe XML:DB API collections areretrieved by calling get Col | ect i on and handing it a
URI that specifies the collection we want. The format of this URI will vary depending on the
database implementation being used but will aways begin with xm db: and be followed by
a database specific database name, xi ndi ce: in the case of Xindice.

Therest of the URI is apath used to locate the collection you want to work with. This path
begins with the name of the root collection for the Xindice instance that you are trying to
connect with. All Xindice instances must have a unique name for the root collection. The
reason for thisis that the name of the root collection is also the name of the database instance
and that name is what the Xindice server usesto register itself with the naming service. In al
examplesin this guide the root collection is called db. Thisis the default name used for a
newly installed instance of Xindice. If you have more then one instance of Xindice running

Page 8

Xindice 1.1 Developer Guide

that you must be sure to change the names on all other instances so that they are unique.
Once you do this you can switch between the instances by simply changing the first
component of the path.

xi ndi ce:/// db/ news
xi ndi ce:///db2/ news

These paths will switch between a Xindice server with aroot collection of db and one of db2.
These instances could be on the same machine or on two completely different machines and
to your application there is no significant difference.

After the root collection name the rest of the URI simply consists of the path to locate the
collection you want to work with.

Now that we have areference to the collection that we want to work with we need to get a
reference to the XPat hQuer ySer vi ce service for that collection.

String xpath = "//person[fname="'"John']";

XPat hQuer yServi ce service =

(XPat hQuer yServi ce) col . get Servi ce("XPat hQueryService", "1.0");
ResourceSet resultSet = service. query(xpath);

Services provide away to extend the functionality of the XML:DB API as well as enabling
the definition of optional functionality. In this case the XPat hQuer ySer vi ce isan
optional part of Core Level 0 but isarequired part of Core Level 1. Since Xindice provides a
CoreLevel 1 XML:DB API implementation the XPat hQuer ySer vi ce isavailable.

To retrieve a service you must know the name of the service that you want as well asthe
version. Services define their own custom interfaces so you must cast the result of the
getService() call to the appropriate service type before you can cal its methods. The
XPat hQuer ySer vi ce definesamethod quer y() that takes an XPath string as an
argument. Different services will define different sets of methods.

Now that we have an XPat hQuer ySer vi ce reference and have called the quer y ()
method we get aResour ceSet containing the results. Since we just want to print out the
results of the query, we need to get an iterator for our results and then use it to print out the
results.

Resourcelterator results = resultSet.getlterator();
whil e (results. hasMreResources()) {
Resource res = results. next Resource();
Systemout.println((String) res.getContent());

Page 9

Xindice 1.1 Developer Guide

Resources are another important concept within the XML:DB API. Since XML can be
accessed with multiple APIs and since an XML database could potentialy store more the one
type of data, resources provide an abstract way to access the data in the database. The
Xindice implementation only supports XML Resource but other vendors may support
additional resource types as well.

XMLResource provides access to the underlying XML data as either text, aDOM Node or
viaSAX ContentHandlers. In our example we're simply working with the content as text but
we could just as easily have called get Cont ent AsDon{() to get the content asa DOM
Node. Since we just want to print the XML out to the screen it is easier to just work with text.

The final element about our example program worth noting is the finaly clause.

finally {
if (col !'=null) {
col . cl ose();

}

The finally clause closes the collection that we created earlier. Thisis vitally important and
should never be overlooked. Closing the collection releases all the resources consumed by
the collection. In the Xindice implementation this will make sure that the CORBA resources
are released properly. Failure to properly call close on the collection will result in aresource
leak within the server.

1.6. Accessing Xindice Remotely

By default Xindice assumes that the client and server are running on the same machine, and
the server is running on port 8888. In most configurations this will not be the case so it will
be necessary to include the hostname and port of the server where Xindice is running in your
URIs. The port you use is the port that the servlet engine is listening on. The port setting
configuration depends on the servlet engine you use. Xindice comes pre-configured with the
Jetty servlet engine running on port 8888, so URL used by default is

xm db: xi ndi ce: / /1 ocal host : 8888. To access the collection /db/addressbook on
host xml.apache.org port 8000 the URI would ook something like this

xm db: xi ndi ce: // xm . apache. or g: 8000/ db/ addr essbook. All examplesin
this document assume that server uses default configuration.

If you are having problems accessing Xindice remotely this may be the result of the Xindice
deployment in the non-standard servlet context name. Xindice assumes that the server will be
deployed under / xi ndi ce servlet context. To do this, you just need to rename Xindice
WAR fileto xi ndi ce. war , and deploy this renamed WAR file. Alternatively, you need to

Page 10

Xindice 1.1 Developer Guide

specify system property xi ndi ce. xm r pc. servi ce-| ocat i on, or set property
servi ce-| ocati on ontheDat abase XML:DB object right after its creation.

2. Managing Documents

In this chapter we'll look at using the XML:DB API to manage documents within the Xindice
server. Aspart of thiswe'll look at some sample code that could be used to manage the data
used by the AddressBook example application included with the server and discussed in
more detail |ater.

When looking at managing documents with the XML:DB API thefirst thing we need to
confront is that the API doesn't actually work directly with documents. It works with what
the API calls resources that are an abstraction of a document. This abstraction allows you to
work with the same document as either text, aDOM tree or SAX events. Thisisimportant to
understand as the use of resources runs as a common thread throughout the XML:DB API.
The XML:DB API actually defines more then one type of resource however Xindice does not
implement anything beyond XML Resource.

2.1. Creating a Collection

Before we can work with any datain the database we need to create a collection to hold our
data. While we could easily create this collection using the command line tools it will be
more fun to see how you might do this from your own program. Thiswill also show you a
quick example of using the Xindice specific Col | ect i onManager service to manage
collections. This guide doesn't go into detail about using this service but you can find lots of
examples by looking at the source code to the command line tool commands in the package
or g/ apache/ xi ndi ce/ t ool s/ conmands.

The collection we want to create will be named nycol | ect i on and will be a child of the
root collection.

2.1.1. Creating a Collection

package org. apache. xi ndi ce. exanpl es;
i mport org.xm db. api . base. *;

i mport org.xm db. api . nodul es. *;

i mport org.xm db. api . *;

/1 For the Xindice specific CollectionManager service
i mport org.apache. xi ndi ce. client.xnl db. servi ces. *;

i mport org.apache. xi ndi ce. xm . dom *;

Page 11

Xindice 1.1 Developer Guide

public class CreateCollection {

public static void main(String[] args) throws Exception {
Col ection col = null;

try {
String driver = "org.apache. xi ndi ce. client.xmn db. Dat abasel npl ";

Class ¢ = C ass.forName(driver);

Dat abase dat abase = (Dat abase) c. new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;
String uri = "xm db: xi ndice:///db/";
col =

Dat abaseManager . get Col | ecti on(uri);

String coll ectionName = "nycol | ecti on";
Col | ecti onManager service =
(Col | ecti onManager) col . get Service("Col | ecti onManager”, "1.0");

/] Build up the Collection XM. configuration.
String collectionConfig =
"<col |l ecti on conpressed=\"true\" " +
! name=\"" + coll ecti onNane + "\">" +
" <filer class=\"org.apache. xindice.core.filer.BTreeFiler\"/>" +
"</col |l ection>";

servi ce. creat eCol | ection(col | ecti onNane,
DOWVPar ser . t oDocunent (col | ecti onConfig));

Systemout.println("Collection " + collectionNane + " created.");

}
catch (XM_DBException e)
Systemerr.println("XM: DB Exception occured " + e.errorCode);

finally {
if (col !'= null) {
col . cl ose();

}
}
}

With this example you can see a basic example of how to create the

Col | ecti onManager service and use it to create the collection. Thisserviceis
proprietary to Xindice so if you useit in your application you will not be able to port it to
another server. However, if you have the need to create collections within your programs this
is currently the most powerful way to do it.

Thetrickiest part of creating a collection is creating the proper XML configuration to hand to
thecr eat eCol | ect i on method. This XML isthe exact same thing that is placed into the
system.xml file. At thistime these XML configurations are not documented so to see what
they need to be you should look for examples in system.xml and the source code for the

Page 12

Xindice 1.1 Developer Guide

command line tools. Future versions of this documentation will cover this areain more detail.

2.2. Working with Documents

Now that we have a collection to store our data, we need to add some datato it. We could use
the command line tools to do this but since we want to learn how the XML:DB APl works
well look at how we can do thisin a program that we write.

For our examplesin this chapter we'll work with some very simple XML files that could be
used to represent a person in an address book. Later in the guide we'll ook at an example
application that implements the actual address book functionality. Each address book entry is
stored in a seperate XML file.

2.2.1. Example Document

<per son>
<f nane>John</ f name>
<l nane>Smi t h</ | nane>
<phone type="wor k" >563- 456- 7890</ phone>
<phone type="hone" >534-567-8901</ phone>
<emai |l type="hone">jsnith@onenmail.conx/enail >
<emai | type="work">j ohn@ ovesushi . conk/ emai | >
<address type="hone">34 S. Col on St.</address>
<address type="work">9967 W Shrinp Ave. </ address>
</ per son>

If we store this example XML into afile we can then load it into our addressbook collection
using asimple program.

2.2.2. Adding an XML Fileto the Database

package org. apache. xi ndi ce. exanpl es;

i mport org.xm db. api . base. *;
i mport org.xm db. api . nodul es. *;
i mport org.xm db. api . *;

i mport java.io.*;
public class AddDocunent {

public static void main(String[] args) throws Exception {
Col I ection col = null
try {
String driver = "org.apache. xi ndi ce. client.xmn db. Dat abasel nmpl ";
Class ¢ = O ass.forName(driver);

Page 13

Xindice 1.1 Developer Guide

Dat abase dat abase = (Dat abase) c.new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;
col =
Dat abaseManager . get Col | ecti on(" xmn db: xi ndi ce: /// db/ addr essbook") ;

String data = readFi |l eFronDi sk(args[0]);

XM_Resour ce docunent =
(XM_Resour ce) col.createResource(null, "XM.Resource");
docunent . set Cont ent (dat a) ;
col . st or eResour ce(docunent) ;
System out. println("Docunment " + args[0] + " inserted");

}
catch (XM_DBExcepti on e)
Systemerr.println("XM: DB Exception occured " + e.errorCode);

%inally {
if (col !'=null) {
col . cl ose();

}
}

public static String readFil eFronDi sk(String fil eNane) throws Exception {
File file = new File(fil eNane);
Fil el nputStreaminsr = new Fil el nputStrean(file);

byte[] fileBuffer = new byte[(int)file.length()];

insr.read(fileBuffer);
i nsr.close();

return new String(fileBuffer);

}
}

Much of this program is similar to what we've already seen in our other XML :DB programs.
Really the only difference is the code to add the document.

Documents are added to the server by first creating a new resource implementation from a
collection, setting its content and then storing the resource to the collection. The type of
resource that is created is an XML Resource this can be used to store XML as either text, a
DOM Node or a SAX ContentHandler.

If you had your content already in a DOM tree you could also add the document asa DOM.

XM_Resour ce docunent = (XM.Resource) col.createResource(null
"XM_Resource");

docunent . set Cont ent AsDOM doc); // doc is a DOM docunent

col . st or eResour ce(docunent) ;

Page 14

Xindice 1.1 Developer Guide

The only difference here is that you must have the document asa DOM Document already
and then call set Cont ent AsDOM) . From there the resource works the same as always.

One thing to note is that a resource must be stored in the same collection from which it was
originally created.

2.2.3. Retrieving an XML Document from the Database

package org. apache. xi ndi ce. exanpl es;

i mport org.xm db. api . base. *;
i mport org.xm db. api . nodul es. *;
i mport org.xm db. api . *;

i mport java.io.*;

public class RetrieveDocunment {
public static void main(String[] args) throws Exception {
Col I ection col = null
try {
String driver = "org.apache. xi ndi ce. client.xmn db. Dat abasel npl ";
Class ¢ = C ass.forName(driver);

Dat abase dat abase = (Dat abase) c. new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;
col =
Dat abaseManager . get Col | ecti on(" xm db: xi ndi ce: /// db/ addr essbook") ;

XM_Resour ce docunent = (XM.Resource) col.getResource(args[0]);
if (document != null)

System out . printl n("Docunment " + args[0]);

System out . printl n(documnent. get Content());

el se {
System out . printl n("Docurment not found");

}

}
catch (XM_DBException e) {
Systemerr.println("XM.: DB Exception occured " + e.errorCode);

%inally {
if (col !'=null) {
col . cl ose();

e

2.2.4. Deleting an XML Document from the Database

Page 15

Xindice 1.1 Developer Guide

package org. apache. xi ndi ce. exanpl es;

i mport org.xm db. api . base. *;
i mport org.xm db. api . nbdul es. *;
i mport org.xm db. api . *;

i mport java.io.*;

public class Del et eDocunent {
public static void main(String[] args) throws Exception {
Col l ection col = null;
try {
String driver = "org.apache. xi ndi ce. cli ent.xmn db. Dat abasel nmpl ";
Class ¢ = C ass. forNane(driver);

Dat abase dat abase = (Dat abase) c.new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;
col =
Dat abaseManager . get Col | ecti on(" xm db: xi ndi ce: /// db/ addr essbook") ;

Resource docunent = col . get Resource(args[0]);
col . removeResour ce(docunent) ;
System out. println("Docunment " + args[0] + " renoved");

}
catch (XM_DBExcepti on e)
Systemerr.println("XM.: DB Exception occured " + e.errorCode);

%inally {
if (col !'=null) {
col . cl ose();

———

3. Using XPath to Query the Database

3.1. Introduction

Xindice currently supports XPath as a query language. In many applications XPath is only
applied at the document level but in Xindice X Path queries are executed at the collection
level. This means that a query can be run against multiple documents and the result set will
contain all matching nodes from all documents in the collection. The Xindice server also

support the creation of indexes on particular X Paths to speed up commonly used X Path
gueries.

3.2. Using the XML :DB Java API

Page 16

Xindice 1.1 Developer Guide

The XML:DB API defines operations for searching single documents as well as collections
of XML documents using X Path. These operations are exposed through the
XPathQueryService. In order to query single documents you use the quer yResour ce()
method and to query an entire collection you use the quer y() method.

3.2.1. Querying with XPath

This example simply executes an X Path query against a collection, retrieves the results as
text and prints them out.

Y ou can find the source code for this example in
Xindice/javalexamples/guide/src/org/apache/xindice/examples/Examplel.java

package org. apache. xi ndi ce. exanpl es;

i mport org.xm db. api . base. *;
i mport org.xm db. api . nbdul es. *;
i mport org.xm db. api . *;

public class Exampl el {
public static void main(String[] args) throws Exception {
Col l ection col = null
try {
String driver = "org.apache. xi ndi ce. client.xmn db. Dat abasel nmpl ";
Class ¢ = O ass.forName(driver);

Dat abase dat abase = (Dat abase) c. new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;

col =
Dat abaseManager . get Col | ecti on(" xmn db: xi ndi ce: /// db/ addr essbook") ;

String xpath = "//person[fnane="John']";
XPat hQuer yServi ce service =
(XPat hQuer yServi ce) col . get Service("XPat hQueryService", "1.0");
ResourceSet resultSet = service.query(xpath);
Resourcelterator results = resultSet.getlterator();
whil e (results. hasMreResources()) {
Resource res = results. next Resource();
Systemout.println((String) res.getContent());

}
catch (XM_DBExcepti on e)
Systemerr.println("XM.: DB Exception occured " + e.errorCode);

%inally {
if (col !'=null) {
col . cl ose();

Page 17

Xindice 1.1 Developer Guide

}

}

TODO: cover namespace support

4. Using XUpdateto Modify the Database

4.1. Introduction

XUpdate is a specification under development by the XML :DB Initiative to enable simpler
updating of XML documents. It is useful within the context of an XML database aswell asin
standalone implementations for general XML applications. XUpdate gives you a declarative
method to insert nodes, remove nodes, and change nodes within an XML document. The
syntax is specified in the XUpdate working draft available on the XML:DB Initiative
website.

The XUpdate implementation in Xindice is based around the Lexus XUpdate implementation
that was developed by the Infozone Group.

The general model around XUpdate isto use an xupdat e: nodi fi cati ons container to
batch a series of XUpdate commands. All commands will be performed in series against
either asingle XML document or an entire collection of XML documents as specified by the
developer.

Execution of XUpdate commands is performed in two phases. First selecting a node set
within the document or collection and then applying a change to the selected nodes.

4.1.1. Basic XUpdate Insert Command

<xupdat e: nodi fi cati ons version="1.0"
xm ns: xupdat e="htt p: // www. xm db. or g/ xupdat e" >

<xupdate:insert-after select="/addresses/address[1]" >

<xupdat e: el enent nanme="addr ess" >

<xupdate: attri bute nane="id">2</xupdate: attri bute>
<ful | name>John Smi t h</ful | name>

<born day='2' nonth='12' year='1974'/>

<count r y>Ger many</ count ry>

</ xupdat e: el ement >

</ xupdat e: i nsert-after>
</ xupdat e: nodi fi cati ons>

Page 18

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.infozone-group.org/

Xindice 1.1 Developer Guide

4.2. XUpdate Commands

e Xxupdate:insert-bef ore -Insertsanew nodein document order before the
selected node.

e Xupdate:insert-after -Insertsanew nodein document order after the selected
node.

e Xupdat e: updat e - Replaces al child nodes of the selected node with the specified

nodes.

xupdat e: append - Appends the specified node to the content of the selected node.

xupdat e: r enpbve - Remove the selected node

xupdat e: r enane - Renames the selected node

xupdat e: vari abl e - Defines avariable containing anode list that can be reused in

later operations.

4.3. XUpdate Node Construction

e Xupdat e: el enment - Creates anew element in the document.

e Xupdate: attri but e - Creates anew attribute node associated with an
xupdat e: el enent .

e Xupdat e: t ext - Createsatext content node in the document.

e Xupdat e: processi ng-i nstructi on - Creates aprocessing instruction nodein
the document.

e Xupdat e: conment - Creates a new comment node in the document.

4.4. Usingthe XML:DB API for XUpdate

The XML:DB API provides an XUpdateQueryService to enable executing XUpdate
commands against single documents or collections of documents. To update asingle
document you use the updat eResour ce() method and to apply the updates to an entire
collection you use the updat e() method.

The next example program applies a set of XUpdate modifications to an entire collection of
data. It first removes all elements that match the XPath / per son/ phone[@ ype =
"hone'] and then adds a new entry after all elements that match the X Path

[per son/ phone[@ype = 'work']

4.4.1. Using XUpdate to modify the database

i mport org.xm db. api . base. *;
i mport org.xm db. api . nbdul es. *;
i mport org.xm db. api . *;

Page 19

Xindice 1.1 Developer Guide

/**

* Sinple XM.: DB APl exanpl e to update the database.

*/

public class XUpdate {
public static void main(String[] args) throws Exception {

————

Col ection col = null;
try {
String driver = "org. apache. xi ndi ce. client.xmnl db. Dat abasel npl "

Class ¢ = O ass.forName(driver);

Dat abase dat abase = (Dat abase) c. new nstance();
Dat abaseManager . r egi st er Dat abase(dat abase) ;
col =
Dat abaseManager . get Col | ecti on("xm db: xi ndi ce: /// db/ addr essbook") ;

String xupdate = "<xu:nodifications version=\"1.0\"" +
! xm ns: xu=\"http://ww. xm db. or g/ xupdat e\ ">" +
<xu: remove sel ect=\"/person/ phone[@ype "home' J\"/>" +
<xu: updat e sel ect=\"/person/phone[@ype = '"work'J\">" +
480- 300- 3003" +
</ xu: updat e>" +
"</ xu: modi fications>";

XUpdat eQueryServi ce service =
(XUpdat eQuer yServi ce) col . get Servi ce("XUpdat eQueryService", "1.0");
servi ce. updat e(xupdat e) ;

}

catch (XMLDBException e)
Systemerr.println("XM: DB Exception occured " + e.errorCode + " " +
e. get Message());

finally {
if (col !'=null) {
col . cl ose();

5. Storing metadata

Xindice allows a devel oper to store metadata that is associated with any collection or
document. Metadata is data that is associated with a document or collection but is not part of
that document or collection. For example, afilesystem lists the last modified time of afile or
directory. That last modified time is metadata about the file or directory.

Within Xindice, when metadata is turned on, each document and collection has a MetaData
object associated with it. The MetaData object is composed of three sectionsand is
represented in XML like this:

Page 20

Xindice 1.1 Developer Guide

<net a>
<system t ype="doc" >
<attr nane="creat ed" val ue="10128378882" />
<attr nanme="nodi fi ed" val ue="10128378882" />
</ syst enp
<attrs>
<attr name="key" val ue="val ue"/>
<attr nane="foo" val ue="bar"/>
</attrs>
<cust onp
<nyspeci al >
any <valid /> xn
</ nyspeci al >
</ cust on®
</ met a>

The first section is enclosed by the <system> element and is controlled by the core of
Xindice. It currently tracks the type of resource referenced, creation time and last
modification time of the resource. The <system> element has an attribute "type" which is
either "doc" for document or "col" for collection. Within the <system> element are <attr>
elements. Each <attr> element has two attributes, name and value. The creation and
modification times are stored in individual <attr> elements. The value of these attributes are
recorded as milliseconds since midnight Jan 1, 1970 (just as System.currentTimeMills()).

The second section is amap of key-value pairs and is enclosed by the <attrs> element. Each
key-value pair is represented in asingle <attr> element. The key-value pairs are completely
controlled by the user. Y ou can add or remove any key-value pair in this section. Note that
the map is from Object to Object, so you can store any object your application requires.

The third section is a custom XML document. Thistoo is completely controlled by the user.
The only prerequisite is that the document stored is well-formed XML.
5.1. Enabling metadata

To turn on metadata storage in Xindice, edit the system.xml configuration file and set the
"use-metadata” attribute of the root-collection element to "on". Restart your container, and
metadata storage will be enabled.

If properly configured, when you restart your container, you will see alog message that |ooks
likethis:

Dec 30, 2002 10: 21:51 AM org. apache. xi ndi ce. cor e. Dat abase set Confi g
INFG Meta information initialized

Page 21

Xindice 1.1 Developer Guide

This example is from the output of Tomcat. The output from other containers might look different, but the message ("Meta
information initialized") should be identical.

5.2. Using metadata

How you use metadatais really up to you, the application developer. There are many
potential uses depending on your application. One example is a content management system
in which each document has a series of states through which it must pass. The states might be
controlled by afinite state machine, but each document's current state would be stored in the
metadata associated with it.

5.3. Sample metadata code

Currently the metadata accessors are implemented as non-standard meta information service
which can be obtained via XML:DB APl (name "MetaService', version "1.0"), and it also
available viathe XML-RPC code.

The Xindice XML-RPC server has four metadata related methods: GetCollectionMeta,
GetDocumentMeta, SetCollectionMeta, SetDocumentMeta. Here's quick perl script which
creates a collection and then dumps out its metadata contents, and then sets some values
inside the metadata.

#!/usr/ 1 ocal / bi n/perl -w
use strict;

use Frontier::dient;

use Dat a:: Dunper;
my($server, $resul t, $url);

$url = '"http://|ocal host: 8888/ xi ndi ce' ;
$server = Frontier::dient->new ' url'=>%url, "' debug' =>0);

try listing the collections
| ook at org/apache/ xi ndi ce/ server/rpc/ messages/ *.j ava
for the 'message' possibilities. The paraneters are there as well.

nmy $col name = ' ni nenet atest"' ;

my $args = {};

#first, add the collection directly under the /db root.
$args->{' nessage'} = 'CreateCol |l ection';
$args->{'collection'} = "'/db";

$args->{' name'} = $col naneg;
$result = $server->call ('run', $args);

now get the collection's neta

Page 22

Xindice 1.1 Developer Guide

$args = {};
$args->{' nessage'} = 'GetCol |l ecti onMeta';
$args->{'collection'} = "'/db/'. $col nane;

$result = $server->call('run', $args);

this should print out the xm for the
col |l ection's net adat a.
print Dunper($result);

now add sone stuff to the netadata
nmy $nmet a=<<ECF
<?xm version="1.0"?>
<net a>
<l-- since the systemis controlled by
Xindi ce, this doesn't matter..
- >
<system type="col ">
<attr nane="created" val ue="1" />
<attr nanme="nodi fi ed" val ue="5" />
</ syst enp
<attrs>
<attr nanme="test" val ue="added" />
</attrs>
<cust one
<r df : RDF
xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#" >
<t est >t he rdf exanple</test>

</ r df : RDF>
</ cust on®
</ net a>
EOF
$args = {};
$args->{' nessage'} = 'SetCol | ecti onMeta';
$args->{'collection'} = "'/db/'. $col nang;

$args->{' neta'} = $net a;
$result = $server->call('run', $args);

this should print out the xm for the
coll ection's revi sed netadat a.
print Dunper($result);

FIXME (dviner):
Make this example javainstead of perl.
i Metadatais currently only exposed in the XML-RPC accessor. |

6. Example Application

Page 23

Xindice 1.1 Developer Guide

6.1. Address Book

The address book example is a simple servlet based application constructued using Xindice.
For more information on this example look in the
Xi ndi ce/ j aval exanpl es/ addr essbook directory.

TODO: Add more detail about building servlet applications.

7. Experimental Features

There are a couple of features in Xindice that are definitely experimental. These features can
be interesing to explore to see some things that could be useful in future versions of Xindice
but they should not be considered complete or stable.

Page 24

	1 Introduction to Programming Xindice
	1.1 Accessing the Server
	1.1.1 API's

	1.2 Introducing the XML:DB XML Database API
	1.3 Setting up Your Build Environment
	1.4 Preparing the Server For the Examples
	1.5 Diving in With an Example Program
	1.5.1 Simple XML:DB Example Program

	1.6 Accessing Xindice Remotely

	2 Managing Documents
	2.1 Creating a Collection
	2.1.1 Creating a Collection

	2.2 Working with Documents
	2.2.1 Example Document
	2.2.2 Adding an XML File to the Database
	2.2.3 Retrieving an XML Document from the Database
	2.2.4 Deleting an XML Document from the Database

	3 Using XPath to Query the Database
	3.1 Introduction
	3.2 Using the XML:DB Java API
	3.2.1 Querying with XPath

	4 Using XUpdate to Modify the Database
	4.1 Introduction
	4.1.1 Basic XUpdate Insert Command

	4.2 XUpdate Commands
	4.3 XUpdate Node Construction
	4.4 Using the XML:DB API for XUpdate
	4.4.1 Using XUpdate to modify the database

	5 Storing metadata
	5.1 Enabling metadata
	5.2 Using metadata
	5.3 Sample metadata code

	6 Example Application
	6.1 Address Book

	7 Experimental Features

